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Abstract
This paper presents a new method for the classification

of dielectrical object’s RGB values into their body and sur-
face reflections. Instead of segmenting into the two reflec-
tion components a weight is estimated that a given pixel
belongs to one of them. A weighting value may be useful
for classification of body and surface reflections in com-
bination with other methods. The method operates glob-
ally on the pixel points using expectation maximization
for fitting the body and surface vectors in the case of one
highlight reflection. In the case of multiple highlights it
is shown that it is possible to relax the method by fitting
one surface vector to multiple highlights. The method was
empirically validated on real image data captured using a
high dynamic imaging sensor (120dB). Promising results
show that the method is capable of classifying the two re-
flection components.

Introduction

The aim of many applications is to capture relevant infor-
mation of an object by analysis of either its body or sur-
face reflections, e.g. analysis of vegetation or skin. The
two reflection components are very different in nature and
hence for proper analysis of an object’s characteristic it is
necessary to classify their content.

Body reflection is formed by light penetrating into the
material body where it scatters around hitting pigments,
fibers and other materials. It is the reflection that gives per-
tinent spectral information about the object, as the color.
Surface reflection is due to the effect that the refractive in-
dex between the object and the surrounding is different.
Therefor some of the incident light will be reflected di-
rectly at the surface before penetrating into the object.

Several methods operating locally in the image plane
have been proposed for classification of objects’ reflection
components [5, 7]. However, in many situations it will
not be possible to rely on the spatial context due to the
structure of the object, in these cases it will be necessary
to classify the reflection components globally in the RGB-
cube.

Globally operating methods have been proposed [5, 8,

12], but these are still limited to one single highlight, i.e.
only one surface vector emerging from the body vector.
However, objects in every day scenarios may have mul-
tiple highlights either due to several light sources or due
to their shape. These objects may have multiple surface
vectors emerging at different intensity levels of the body
vector.

Another constrain for physics-based image analysis
has been the limited dynamic range of the available
cameras. This study demonstrates how a newly intro-
duced 120dB imaging sensor may enable new possibilities
within the analysis of reflection components.

In this paper we will introduce a method using EM
(Expectation-Maximization) for classification of objects
reflection components operating globally on their RGB
values. The results show that by using EM to fit a body
and surface vector it possible to assess the content of re-
flection for the two component. The method may be used
for weighting of other analysis methods that rely on either
of the reflection components or for isolation or specific ar-
eas on the object of interest for further analysis, i.e. the
body reflection may used to obtain pertinent information
about an object, the surface reflection for white balancing
or control of the image formation process, e.g. exposure
time.

The paper is organized as follows: The first section
presents the dichromatic reflection model together with
the EM algorithm. The next focuses one the implemented
method. The following sections present the experimental
setup, results, discussion, and conclusion.

Modelling

The Dichromatic Reflection Model
The dichromatic reflection model, introduced by Shafer
(1985) [10], states that the reflected light from dielectrical
objects may be split into two (di) distinct reflection com-
ponents from the body (b) and the surface (s) of it. For a
color camera the model may be expressed by:

C(x,y) = mb(Θ)Cb(x,y) + ms(Θ)Cs(x,y) (1)
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where C(x,y) is a three dimensional color vector for
the pixel at location (x, y). It is an additive mixture of
the body reflection Cb(x,y) and the surface reflection
Cs(x,y) color vectors of the body and surface reflec-
tions scaled by the geometrical scaling factors mb(Θ) and
ms(Θ), respectively. Θ, denotes the photo metrical an-
gles, incident angle, exit angle of the illumination, and the
phase angle between the camera and observer.

For eq. 1 it may also been noted that the pixel points
of an object will be distribution in a plane spanned by
its body and surface vectors. Further, the chromaticity of
the pixel points will traverse from the chromaticity of the
body reflection to the chromaticity of the surface reflection
at increasing intensity [1].

For analysis of color images the model has been used
for image segmentation [5, 9, 7], analysis of highlights
[6], estimating scene properties [8], color and characteris-
tic of illumination [1, 15, 11], and for computer graphics
rendering [14].

Expectation-Maximization
The Expectation-Maximization algorithm (EM) [3] is
used for many statistical estimation problems and espe-
cially for parameter estimation in incomplete data sets.
The basic structure of the method is as follows:

• Initialize the parameters, that need to be estimated,
randomly or by some intuitively classification of the
data set

• Iterate until the parameters converge:

– E step: Compute the expectation

– M step: Update the parameters

In this case the objective is to classify the pixels body
and surface reflection components, which in nature is an
incomplete data sets as we do not have the class assign-
ments given a priori.

Method

One highlight
In the case of one highlight cluster we expect the pixel
points to be distributed in one body and surface reflec-
tion cluster, respectively. We approximate these clusters
by two vectors, the object’s body and surface reflection
vector, respectively.

Initialization

The EM procedure is initialized by classification of the
pixel points into their body (b) and surface (s) reflection
components according to their intensity by the following
criteria:

ω(x, y) =

{
b if I(x, y) < max(I)

2

s if I(x, y) ≥ max(I)
2

(2)

where I(x, y) is the intensity of the color vector at location
(x, y) in the image, i.e. the image is simply classified into
two classes according to half of the maximum intensity.

Next, a line is fitted to each of the initial classes by
orthogonal regression forced to pass through the origin,
which corresponds to a principal component analysis of
the unscaled sum of square and cross product matrix [4]
of the pixel points RGB values. The component with the
largest eigenvalue will give the direction of the estimated
body or surface vector, respectively.

EM estimation

In the expectation step we compute the softmin assign-
ment of each pixel points RGB value to the model for body
and surface reflection by:

wb = e−r′brb/σ2

e−r′
b
rb/σ2

+e−r′srs/σ2 ws = e−r′srs/σ2

e−r′
b
rb/σ2

+e−r′srs/σ2

(3)
The general expected residual for the models is de-

noted by σ which is estimated by fitting a plan to all pixel
points at once, i.e. the object’s pixel points are expected
to lie in a plane spanned by its body and surface vectors.
This is done by a principal component analysis of the co-
variance matrix of all the object’s pixel points RGB-values
and σ is estimated by the third and smallest eigenvalue.

The residuals rb and rs are the deviation of a pixel
point from the body and surface vectors, respectively,
given by:

rb,s = C − (Cb,s · eb,s)eb,s (4)

where eb,s is the first principal component of the sum of
squares and cross products matrix of the body or surface
pixel points, and C the color vector of location (x, y). The
error is simply the distance between the pixel points color
vector and its projection onto the first principal compo-
nent.

In the maximization step we update the direction of
the body and surface vectors by a principal component
analysis of the weighted sum of squares and cross prod-
uct matrices:

Sb,s = Φ′Wb,sΦ/trace(Wb,s) (5)

where Wb,s is a diagonal matrix of the weights for the
body and surface reflection model, respectively. Trace is
the sum of the diagonal elements, and Φ is a matrix of all
color vectors C.
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Figure 1: (a), compressed color image of yellow plastic cup. (b), classification of reflections components by maximum weight wb,s.
Light points surface reflection. Mid gray body reflection. Black excluded pixels. (c), initial classification of pixel points using half
maximum intensity. (d), final classification using maximum weight, arg max(wb,s).

Multiple highlights
In the case of several light sources with the same spec-
tral composition illuminating an object from different di-
rections or due to the object’s shape multiple highlights
may occur. Hence, several surface reflection vectors may
emerge along the body vector at different intensities. Ide-
ally every surface vector should be fitted.

However, daily life objects will normally consist of
predominant body reflections. Therefore there will be suf-
ficient points for proper estimation of the body vector. In
order to avoid the influence from pixel points with pre-
dominant surface reflection the estimation of the surface
vector is relaxed to include all surface vectors, or more
specific to gather pixel points with a large deviation from
the body vector.

Experiments

For the experiments we use a newly introduced High Dy-
namic Locally Adaptive Imaging Sensor (LARSIII) from
Silicon Vision1. The sensor is able to capture images with
a dynamic range of 120dB, for a thorough introduction
of the technology please consult [13]. The sensor is cur-

1Silicon Vision GmbH, Dresden, Germany

rently only available in monochrome so to form color im-
ages standard DT-RGB filters are placed in front of it and
three images are captured immediately after each other.
The camera delivers images in 24 bit resolution and, as
the experiments will demonstrate, problems with saturated
pixels are very unlikely to occur in ”daily life” situations.
To be able to visualize the 24 bit images we do a simple
compression by scaling of these according to their maxi-
mum intensity.

All images are captured with the camera placed be-
tween two fluorescent lamps TLD 965 from Philips with
a correlated color temperature of 6200K. The camera was
white balanced according to reflection from a GretagMac-
beth ColorChecker. Pixel points with an intensity below
10.000 were excluded in the analysis (N.B remember that
the camera has a resolution of 24 bit).

As with all assessment of computer vision methods
getting a picture of ground truth is difficult. In this case
it is even harder as there are no clear boundaries between
the classes. As a result we will in this paper rely on vi-
sual inspection for assessment of the performance of the
method.

As discussed in the introduction the method operates
globally on the pixel points and hence it is possible to use
it for objects with surface reflections widely spread. How-
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Figure 2: (a), compressed color image of yellow plastic cup with multiple highlights. (b), classification of reflections components by
maximum weight wb,s. Light points are surface reflection, mid are gray body reflection, and black are excluded pixels (background).
(c), initial classification of pixel points using half maximum intensity. (d), final classification using maximum weight, arg max(wb,s).

ever, to perform visual inspection of such is almost im-
possible so as a test object a well defined yellow plastic
cup is chosen. Later, to illustrate the method on complex
structures it is used to for analysis of a coffee plant.

After each iteration of EM algorithm the pixel points
where assigned to the class with maximum weight
arg max(wb,s) and its was run until no pixel points
changed class, normally ten iterations.

Results

In figure 1 the result from analysis of the yellow plastic
cup with one highlight is illustrated. The figure clearly
shows the cluster structure of the color cube with one body
and surface reflection cluster. It also illustrates the capa-
bility of the EM algorithm to classify pixel points into the
two reflection components. Due to the smooth surface of
the plastic cup the boundaries between predominant body
or surface reflection become almost binary, i.e. the weight
factor wb,s changes between 0 and 1. Therefor the classi-
fied image figure (1, b) is shown as a binary image deter-
mined by maximum of the weight factor, arg max(wb,s).

Figure 2 illustrates the yellow cup with multiple high-
lights and the corresponding surface vectors in the color
cube. Despite that there are clearly three predominant sur-

face vectors in the color cube the EM algorithm stills finds
the body and surface vectors. Even the surface reflection
at the handle of the cup where the intensity is half that
of the major surface reflection at the cup is classified cor-
rectly.

Figure 3 illustrates the method used on a coffee plant
illuminated with two light sources with a complex re-
flection pattern as a mixture of body and surface reflec-
tions. (b) illustrates the distribution of the weight factor
wb, which in this case is not binary but rather a smooth
weighting factor. Comparing the images in (a) and (b) the
value of wb seems to be in good accordance with the re-
flection pattern of the coffee plant. This image may be
used for weighting or selection of areas in for example
spectroscopic analysis.

In figure 3 (c) and (d) the results of a more detailed
analysis of the area within the black square in (b) is illus-
trated. (c) illustrates the distribution of the pixel points
chromaticities of the part area including the direction of
the first principal component of the points. In (d) the resid-
uals rb,s are plotted against the score of the chromaticity
points on the first principal component of their covariance
matrix for the body and surface vector, respectively.

The relationship in (d) shows how the method works.
Due to the initialization of the EM algorithm the direction
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Figure 3: (a), compressed color image of a coffee plant. (b), weight factor wb for the coffee plant, ranging between 0 and 1. Zero,
predominant surface reflection. One, predominant body reflection. (c), histogram of r-g chromaticities for the pixel points enclosed by
the black square in (b). Included line illustrates direction of 1. principal component of the chromaticities centered at the mean value of
these and included point shows chromaticity of light source. (d), score value of chromaticity points on 1.principal component of their
covariance matrix against residual rb,s for the body vector (dark points) and surface vector (light points), respectively. Included line
shows chromaticity of light source.

of the body vector is well estimated whereas the surface
vector collects the points with a large deviation from the
body vector. This hypotheses is well supported by the rela-
tionship in (d). The residuals from the body vector grow as
the score of the chromaticity points traverses to the score
of the light source chromaticity. The hyperbolic relation-
ship is also in good accordance with the modelled relation-
ship reported in [2] using a Lambertian model for the body
reflection and Torrance & Sparrow model [16] for the sur-
face reflection. The fitted surface vector on the other hand
does not show any specific relationship between the score
of the chromaticity points and the residuals.

Discussion

Despite the method forces the surface vector to pass
through the origin it stills classifies the two reflection com-
ponents very satisfactory in the case of one highlight. In
this case it could have been reasonable not to force it
through the origin but this would probably give problems
in the case of multiple highlights. This may be an issue
for further investigation.

In the case of multiple surface reflections the relax-
ation on the number of surfaces vectors to estimate does
not seem to decrease the performance of the method. In-
stead the hypotheses that the high number of pixel points
having predominant body reflection together with the ini-
tialization of method directs the EM procedure to a very
reasonable estimation of the body vector. Still the method
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is only evaluated on two objects, however, the coffee plant
is a fully realistic case with a very complex reflection pat-
tern.

The paper also illustrates the potential high dynamic
cameras may offer development of computer vision meth-
ods. The relationship between the score on the first prin-
cipal component and the residuals from the body vector
is only possible to obtain with a camera with this high
dynamic range. In a conventional camera with a dynamic
range of about 70dB the relationship would have been very
difficult to obtain due to saturated pixels. Further, inves-
tigation of this relationship may lead to new methods for
estimation of intrinsic characteristics of objects, such as
optical roughness.

Conclusion

In this paper a new method for the classification of pixel
points reflection into body and surface components. The
body and surface reflection vectors of an object are esti-
mated by Expectation-Maximization. It is shown that the
method correctly classifies the two reflection components,
both in the case of one and multiple highlights. It is ex-
perimentally evaluated on an ideal yellow plastic cup and
on a realistic image of a coffee plant with a very complex
reflection pattern. The developed method may be useful
for proper spectroscopic analysis of dichromatic objects.
Furthermore, the paper demonstrates the advantages use
of high dynamic cameras may offer in the development of
computer vision methods.
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